Semi-adaptive response and noise attenuation in bone morphogenetic protein signalling.

نویسندگان

  • Tian Hong
  • Ernest S Fung
  • Lei Zhang
  • Grace Huynh
  • Edwin S Monuki
  • Qing Nie
چکیده

Temporal dynamics of morphogen-driven signalling events are critical for proper embryonic development. During development, cells translate extracellular bone morphogenetic protein (BMP) gradients, often subject to noise, into graded intracellular tail-phosphorylated SMAD (TP-SMAD) levels. Using modelling and experimental approaches, we found that BMPs induce TP-SMAD responses in neural precursor cells in a concentration-dependent manner, which are semi-adaptive within a specific intermediate range of BMP concentration. These semi-adaptive TP-SMAD responses involve an intrinsically slow deactivation of BMP receptors, which attenuates noise by prolonging SMAD deactivation time after BMP withdrawal, but increases response time. Interestingly, negative feedback on BMP receptors is also required for semi-adaptation, which benefits both noise attenuation and response time, and therefore balances the trade-off seen with slow BMP receptor deactivation. These results highlight the rich dynamics of SMAD regulation in response to graded BMP concentration, and elucidate general design principles for balancing noise attenuation and activation speed in signalling systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells.

Glioblastoma cells with stem-like properties control brain tumour growth and recurrence. Here, we show that endogenous neural precursor cells perform an anti-tumour response by specifically targeting stem-like brain tumour cells. In vitro, neural precursor cells predominantly express bone morphogenetic protein-7; bone morphogenetic protein-7 is constitutively released from neurospheres and indu...

متن کامل

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Single Nucleotide Polymorphism Analysis of the Bone Morphogenetic Protein Receptor IB and Growth and Differentiation Factor 9 Genes in Rayini Goats (Capra hircus)

The FecB, a mutation in the bone morphogenetic protein receptor IB (BMPR-IB) gene, which increases the fecundity of Booroola Merino sheep, and FecGH, a mutation in the Growth and Differentiation Factor 9 (GDF9), which affects the fecundity of Cambridge and Belclare sheep in a dose sensitive manner, were analyzed as candidate genes associated with the prolificacy in Rayini goats. These polymorph...

متن کامل

Comparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4

Background: Activation of bone morphogenetic protein 4 (BMP4) signaling pathway in embryonic stem (ES) cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, ...

متن کامل

Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 12 107  شماره 

صفحات  -

تاریخ انتشار 2015